McLaren MP4-26 2011 – Fan Tail (Octopus) Exhaust

McLaren went into 2011 with an aggressive design strategy, this was a response to the poor initial form in 2010 and resulted in the dramatic “U” sidepods and a mysterious exhaust system.


It was this exhaust system that stole most of the column inches in the F1 press and the fan forums during pre season testing. One particular column fed the interest around the exhaust and christened it the “Octopus”. The article suggested the exhaust was ducted to several exits and used high temperature Glass Ceramic Carbonfibre (GCC). It went on to explain the unreliability of the exhaust solution was due to the heat making it fail.
It was true McLaren’s first tests, even from the first private shakedown runs before the public testing had started, demonstrated a problem with the initial exhaust design. But this exhaust solution was not the “Octopus” as described; in fact McLaren Technical Director Paddy Lowe explained to me at the 2012 cars launch, that “it didn’t look anything like an Octopus”. Adding “The exhaust we had was a slot, we called it a fantail”, which was a simpler, albeit still innovative solution.

Continue reading

McLaren: Front End Aero Development

McLaren have long since followed their own path in aero development. Certainly since 2009 the car has increasingly diverged from other team’s aero concepts and the 2012 MP4-27 is no different. However the current car has a clear lineage in some of the design solutions and the whole front end is an evolution of recent cars.

Development Chronology

2009

Their first car to the current aero regulations in 2009 sported a conventional nose, front wing and cascades.

2010

The car that was launched in 2010 had a very different front end. The drooped nosed of the MP4-24 was gone replaced by a more horizontal and shallower nose cone. Beneath this was fitted large aero device, I term a “snow plough”, Williams had run a similar solution in 2009.

From a horizontal leading edge positioned between the front wing mounting pylons, the snow ploughs surface splits into left and right sections and eventually forms a pair vertical vanes protruding below the nose. This creates a “V” section mid way along its length and the twist of the airflow along with the pressure differential between the upper\lower surfaces creates vortices trailing from the rear of the vanes. This is an aggressive solution compared to the simpler turning vanes other teams use. This device probably creates some downforce in its own right, but I suspect the primary purpose is to direct the strong vortices along the Y250 axis, to drive a better airflow towards the floors lower leading edge.

Later in 2010 after a series of different iterations of endplate and cascade design, the wing substantially changed for Singapore GP.  The main plane was effectively split into two; a section ahead of the front tyres and a section inboard of that. The intersection between the sections formed an upright for the main cascade winglet. While the less aggressive inboard wing span gains a simple “r” shaped vane.

2011

McLaren continued the 2010 design of snowplough nosecone and split front wing into 2011 with the MP4-26. Again later in the year, the wing was simplified for the Indian GP with similar endplates and cascades, but the complex split shape wing profile was changed to be straight across its width.

2012

Again this format was brought forward to the launch and initial test version of the 2012 MP4-27. Only in the last days of Barcelona testing did the revised front end appear. Gone was the snowplough and the straight wing profile. In their place was a simpler nose cone and a pair of vanes dropping vertically from the nose. While the more complex split wing profile was reintroduced. With EBDs less powerful this year, teams are finding downforce levels are lower. We could conclude that the snowplough and straighter wing arrangement were better for downforce, so the new simpler arrangement may be a more efficient way of producing less downforce.

The other change in China was the deletion of the slots in the small cascade winglet. The slots would have reduced the strength of the vortex produced by the winglet, removing the slots will have increased them. This change will be made in order to direct a stronger airflow around the inside face of the front wheel.
As the team get to grips with the new exhaust regulations and start to develop more downforce, potentially some of these solutions could return. So any reappearance will tell us a story of development and aero load figures in 2012.

Launch Analysis: McLaren Mercedes MP4-27

As the first real launch of a 2012 F1 car, McLaren have unveiled their MP4-27. In McLaren parlance this was the cars “technical launch” and was carried out at their Technical Centre in Woking, UK.

2011
McLaren had one of the fastest cars in 2011, on its day the MP4-26 was faster than the Red Bull. So the basic approach of the new car did not need to veer too far from direction McLaren had been following. Last year the season was blighted by poor form in pre season testing. Most of the winter tests were interrupted by exhaust problems, as the now near mythical “octopus” exhaust broke after a few laps out on track. This exhaust turned out to be far simpler than the rumours suggested. The exhausts ran sideways across the floor to exit in a longitudinal slit ahead of the rear wheels. This being a complex way to achieve the same sort of fluid skirt that Red Bull achieved with their outer blowing exhaust layout. Once McLaren had followed Red Bulls lead with the exhaust, they were able to catch up. McLaren perhaps even surpassed Red Bull with the exhaust blown diffuser, as the Mercedes Hot Blown engine mappings were superior to the Renault cold blown solutions. Despite the rules trying cap the hot blown benefits as early the Canadian GP, the Silverstone GP weekend showed how much McLaren were lost relative to Red Bull when the restrictions really bit hard.

Philosophy
With a strong car at the end of 2011, the team have learnt about the damage a slow start to the year makes to their championship chances. This year evolution is required, McLaren do not need to find large chunks of time, but do need a car that will perform well at the opening races. Thus we see the refinement of old concepts and little in the way of radical development.
Thus the new car bred from the recent line of McLarens, the family resemblance goes further than the colour scheme. With a low nose and sweeping lines over rounded sidepods are now trademarks of the Woking design team. With the second year of the fixed weight distribution and Pirelli tyres, little needed to be done to the cars basic layout. Running much the same chassis, fuel tank size and gearbox, so the wheelbase is similar to the previous car.
Although the 2012 Pirelli front tyres are a new shape tyre, Paul Hembury from the tyre supplier confirmed to me that the change in the new profile is “not visible to the eye”. So only small optimisations of the front end aero are needed to cope with the change.

The nose-down, tail-up 'Rake' of the car is evident, with as much as 10cm of rear ride height

The studio photos of the car in side profile show off the amount of rake the car is designed to run. This is also a carry over from 2011, as the car could often be seen with a clear 10cm of ride height at the rear axle line. Although managing rake will be harder this year as the greater rear height introduces more leakage into the diffuser from the sides. As yet the teams solution to seal the diffuser are hidden by a simple floor fitted to the launch, although these are removable panels and more complex designs will soon be seen.

With so much to carry over in philosophy and design, what has changed for 2012?

MP4-27 in detail
The stand out points on the MP4-27 are the nose, sidepods and exhaust position.

Firstly the front wing is near identical to the late 2011 wing, so we can expect its general design to carry over, as will the snow plough vane below the nosecone. But the height of the nose at first appears to be at odds with the 2012 rules on a maximum 55cm height for the front of the nose.

Looking closer at McLarens chassis in side profile its clear the family history of low noses has helped here. The dashboard bulkhead is may be just 3cm higher than the cockpit padding (which is 55cm high), the chassis top then curves downwards towards the front wheels. By the point of the front (A-A) bulkhead the top is lower than 55cm, may be as low as 5cm below the maximum height. When compared to the maximum heights (the dotted line on the drawing), its clear this is a very low nose overall.

The snow plough vane under the nose might be part of the secret to a low nose

This creates less space under the raised nose, but the teams snow plough device under the nose works aggressively as a turning vane, so perhaps the team don’t need the higher chassis to get the correct airflow to the sidepods leading edge. McLaren also find the lower nose provides the classic vehicle dynamics benefits of a low CofG and a less extreme front suspension geometry. This trade off works for McLaren and goes to prove not everything in F1 has to be a compromise in search of aero advantage.

Unique drillings between the rim and spokes of the wheel aid brake cooling, the ring fairing is missing on the launch car.

Although details around the front end will change, the wheels are typically a design chosen to last for the whole season. This year the McLaren Enkei wheels sport a novel set of drillings to aid brake cooling. The usual spokes formed into the wheel between the hub and the rim, stop short and a radial set of holes are made near the rim. Although not present of the launch car, there will be a dish shaped fairing added to small pegs formed into the wheel to aid the airflow out of the wheel.

The high rectangular inlet and large undercut set the car apart from the "U" pods of the 2011

In 2011 McLaren were not afraid to try a radical sidepod set up, This was the “U” shaped sidepod, with the angled inlet shape creating channel in the upper section of sidepod (About the MP4-26 “U” shaped sidepods).  This year the team have adopted more typical sidepod format, with high\wide sidepod inlets and steep undercut beneath. I got to ask Tim Goss about this:

ScarbsF1: Can you tell us about why the concept’s changed, why you don’t feel that was a benefit this year?
Tim Goss: Last year’s U-shaped side-pod worked very well with what we were trying to achieve last year with the exhaust layout, it was all intended at creating more down wash to the rear end, and it performed particularly well last year. This year at a fairly early stage we set about a different approach to both the external and the internal aerodynamics of the car, and then once the exhaust regulations started to become a little bit clearer then it was quite obvious to us that the U-shaped side-pod no longer fitted in with both the internal aerodynamics and some of the external aerodynamics that we pursued early on. So it works, it worked very well last year, but it’s actually just not suited to what we’re trying to achieve this year.”

.

Not extreme like the "U" pod, but the sidepod tops do incline slightly

In frontal profile the high and wide cooling inlet is obvious.  The team have been able to incline the sidepod tops slightly, this isnt quite a “U”pod shape, but is quite distinctive.  At the rear the team have kept the sidepods narrow and slimmed the coke bottle shape in tightly to make the sidepod join the gearbox fairing creating a continuous line of bodywork to the very tail of the car.

the heated air from the radiators passes up over the engine and out of the central tail funnel

As well as the external airflow considerations, McLaren looked the sidepods internal airflow, they wanted a cooling exit on the cars centreline. This would have been compromised with the “U” sidepod, so the more conventional shape was selected. The cooling arrangement is similar to Red Bulls philosophy, the radiators direct their heated airflow upwards and around the engine, this then exits in a tail funnel. The launch car had quite a modest central outlet, but we can expect to see far larger versions used at hot races.

the front upper section of sidepod is switchable for version with cooling outlets

Aiding the tail funnel there are also cooling panels on the upper leading edge of the sidepod, either side of the cockpit padding and various panels arund the rear of the coke bottle shape. Different panels will be used depending the cooling and\or drag demands of the of the track.

Last years more complex roll hoop cooling inlets have been simplified into one below the engine inlet

Other cooling functions are covered by the inlet below the roll hoop. Last years double inlet set up has gone and now a single duct is used. This probably cools both the gearbox and KERS.

Viewed through the rear wing the exhaust bulge is obvious

The other notable aspect of the sidepods are the exhaust bulges. These stick out prominently on the flank of each sidepod. They don’t serve an aerodynamic function themselves, but simply fair-in the final 10cm of exhaust pipe. This final section of exhaust is now strictly controlled by the regulations. Its position must sit within specific area, it must point upwards between 10 – 30 degrees and can point sideways plus or minus ten degrees. McLaren have fixed the exhaust in the lowest most rearwards position possible, the tail pipe then pointing steeply upwards and inwards. From the limited view it would appear to direct the exhaust plume towards the outer span of the rear wing.

This would make a blown rear wing (BRW), the added flow from the exhaust aiding the wing in creating downforce at lower speeds. The exhaust position and fairing also suggests an alternative exhaust tailpipe could be used. Paddy Lowe confirmed that different solutions would be tried in testing. From overhead its clear to see the exhaust could be angled differently to blow over the rear brake ducts fairings to create downforce directly at the wheel.


The gearbox case design is not the shrunken design we saw with Williams in 2011 , the differential is low but not unduly so. The top of the case sitting neatly under the tail funnel. Pull rod suspension remains at the rear of the car, while conventional pushrod is on the front end. Lowe commented that the Lotus brake antidive system was not specifically looked at, but was part ”of a family of solutions” that has been looked at in the past. The engineers feeling that the Lotus system was illegal and hence had not been explored further. They declined to comment of the possibility of an interlinked suspension system.
Behind the gearcase, the rear impact structure is mounted midway between the beam wing and floor, fully exposing both the beam wing and allowing airflow into the central boat tail shape of the diffuser. As the diffuser was covered up, its not clear if there are features to drive airflow into the starter motor hole. A new feature on the beam wing is an upswept centre section, the extra angle of attack in the middle 15cm of the wing having a slot to help keep the airflow attached. The upper rear wing is a new design albeit similar the short chord DRS flap wing, we saw introduced at Suzuka last year. The DRS pod is still mounted atop the rear main plane and its hydraulics fed to it through the rear wing endplates. The flaps junction with the endplates follows recent McLaren practice with a complex set of vents aimed at reducing drag inducing wing tip vortices.
Not much else in terms of structures or mechanical parts were evident at the launch. Lowe did confirm to me that the Mercedes AMG KERS remained packaged under the fuel tank in one assembly. Also adding that there would not be an significant weight loss to the system.  As a significant reduction in weight was made between the 2009 and 2011 season, via the consolidation of the Batteries and Power Electronics into one unit.

Mp3 of the MP4-27 Engine fire up via McLaren

Mercedes AMG: Engine Build Challenge


During my visit to Mercedes AMG before Christmas, the company set us a challenge that’s been put to other more notable visitors. In the engine build area, two engines were arranged in each bay, but without the coil pack, heat shield and exhausts fitted. Our task was to fit these parts to one side of the engine, along with tightening each fastener to the correct torque setting. A dozen journalists attended the day, the challenge being made even greater as the two current Mercedes AMG drivers had also previously completed the challenge.

The coil pack is handed over and the challenge starts...

The first job was to fit the coil pack. The four-pronged carbonfibre cased unit is a press fit atop each spark plug, then the we needed to connect CAN electronics interface near the front of the airbox.

Next the heatshield goes on... (eventual challenge winner watching intently behind)

A small reflective coated carbonfibre heatshield goes over the coil pack, attached with three small bolts, one of which is smaller and requires a different torque setting.

Access to the 24 exhaust studs under the engine was surprisingly good

Then onto the exhaust system, weighing about 3kg each exhaust is hand made from thin sections of inconnel welded together. Although the 4-into-1 exhaust is one assembly, there is some play in the primary pipes joints with the collector, so fitting the four exhaust pipes to the studs on the engine requires a little fiddling. Each exhaust pipe bolts to the exhaust port with three nuts, two above and to the side of the exhaust pipe, and one centrally below.

A blur of hand movement gets each nut threaded on...

Each of these 24 nuts being tightened to the same torque setting. With the engine up on the stand and being able to kneel below the engine, getting access to each fastener was surprisingly easy, none of the exhaust pipes being particularly obstructive. I’m sure doing the same job with the engine in the car and the floor fitted is a very different story.

A quick check that each nut is torqued correctly and the job's done.

I completed the challenge in 4m 30s and I was satisfied I’d done a good job. However ex Racecar Engineering magazine editor, Charles Armstrong Wilson completed the challenge in an impressive 3m 30s! Even though one (un-named) journalist took as long a 7m 57s, as group us journalists were confident we’d done a good job. But the teams Drivers had soundly beaten us all. Nico Rosberg did the challenge in 3m 15s, while Michael Schumacher did it thee minutes dead!

The job of the F1 engine builder and mechanic is a difficult and skilled one, the skills of the F1 driver are ever impressive and I’ll stick to drawing racecars and not working on them!

Mercedes AMG: KERS development

One of Max Mosley’s lasting legacies in F1 was the introduction of his vision of a green initiative in F1. As a result KERS (Kinetic Energy Recovery System) was introduced 2009, as part of a greater package of rule changes to change the face of F1.
KERS is a system which harvests energy under braking and stores it to provide the driver with an extra power boost each lap. A simple technical summary of KERS is here (https://scarbsf1.wordpress.com/2010/10/20/kers-anatomy/ ).
During the 2009 season McLaren were applauded for running Mercedes KERS at every race and it was widely reported as the best KERS in use that year. Along with a few other journalists, I was invited along to Mercedes AMG Powertrains in Brixworth, UK to hear about KERS development since 2009. With Managing Director Thomas Fuhr and Engineering Director Andy Cowell giving a presentation on the range of work Mercedes AMG does with its F1 teams.

Mercedes AMG Powertrains reside on the site that was previously Mercedes Benz High Performance Engines (MBHPE). Now renamed to reflect the wider application of the groups knowledge, both to uses outside F1 and to areas other than engines. Powertrain is a catch all term covering; engine, transmission, electronics and of course KERS Hybrid systems.
The company have built a purpose designed Technology Centre on the site, which historically was the Ilmor engine plant and positioned just a few miles from Cosworth in Northampton. Clearly this area has a rich seam of Engine knowledge.
Formed around three buildings the entire F1 engine and KERS development is carried out on site, only specialist functions such as the casting of the crankcases is carried out off site. Additionally other Mercedes AMG work is carried out here, such as the AMG E-cell car.

KERS 2009
Mercedes AMG (MBHPE as it was known then) developed their first KERS for 2009 in house. At the time McLaren were the primary customer for the system, although Force India and at the last minute Brawn GP were also customer teams that year.  Force India had a chassis prepared to run KERS, but chose not to during the season.  Brawn had a chassis designed before their switch to Mercedes engines, so their car was not designed to accept the Mercedes KERS.

Mercedes AMG: 2009 Battery pack and water cooling radiator

In designing the system, Mercedes AMG had a specific requirement from McLaren. As the effectiveness of KERS was unknown, McLaren didn’t want to compromise the car if KERS was removed. So the system was packaged to fit into a largely conventional car. Whereas other KERS suppliers went for a battery position under the fuel tank, McLaren and Mercedes AMG placed theirs in the right hand sidepod. Low down and far forward, on the floor between the radiator and the side impact structures. The battery pack contains not only the array of individual cells, but also the pump and pipe work for its water cooling circuit. As well as the electronic interfaces for its control and monitoring. The assembly is around 7cm high, 12cm wide and 40cm long. The KBP is probably the single heaviest KERS component. In 2009 this sidepod package was acceptable as the teams were still on Bridgestone tyres and seeking an extremely forward weight distribution. Thus the 5cm higher mounting in the sidepod was offset by its forward placement.

2009 KERS and the batteries sidepod location relative to the engine

Conversely the smaller Power Control Unit (PCU) was placed in a similar location in the other sidepod, ironically the PCU is around the size and shape of road car battery. This left the monocoque uncompromised, aside from the smaller cut out for the MGU in the rear bulkhead.

The 2009 Zytek developed MGU

Then the Motor Generator Unit (MGU) is mounted to the front of the engine.  This device generates and creates the power for the KERS. Its driven from a small set of gears mounted to the front of the crankshaft.  the unit remains with the engien when the car is dismantled and is oil cooled along with the engine.

All of the components are linked both to the SECUs CAN bus and to each other by High Current Cable. The latter taking the DC current between the Batteries and MGU. With this packaging Mercedes AMG quotes the total system weight as 27kg.
Designed and developed by Mercedes AMG, but other partners were involved; the unique battery cells were supplied via A123 and the MGU was partnered with Zytek. Although the power control electronics were solely a Mercedes AMG in house development.
Through the 2009 season both McLaren drivers had a safe and reliable KERS at each race. The system was safe even after crashes and was fault free despite rain soaked races. Safety was designed in from the outset, all electrics were double insulated. Teams can also measure damage to the unit via accelerometers and insulation sensors, so any impact or incidental damage can be monitored and the car retired if the need arises. Additionally each cell in the battery has its temperature monitored. KERS batteries are sensitive to high and low temperatures, each cell needing to operate in a specific thermal window. Too low and the unit is inefficient and too hot and there’s the danger of explosion.
Perhaps the only criticism was the sidepod battery mounting, despite several incidents, this never put any one in danger, so this never proved to be an unsafe installation.

KERS 2011

2011_Mercedes_AMG_engine

For a variety of non technical reasons KERS was agreed not to be raced from 2010 until the planned 2013 rules. However this plan changed, but not before Mercedes AMG had made new strategic plans around KERS.
Mercedes AMG set out a longer term strategy to work on research for KERS in preparation for 2013, as well as working with AMG to develop the road car based E-cell technology.
(Link Mercedes AMG E-Cell chassis  )
This changed when the plans for the 2013 engine were pushed back to 2014 and KERS was agreed to be reintroduced for 2011. Thus the 2013 development plans had to rebased and deliver a refined version of the 2009 KERS for 2011. Moreover there were now three teams to be supplied with KERS. There was no Christmas for Mercedes AMG staff 2010!
As a result of the research work carried out after 2009, Mercedes AMG now solely design, develop and produce the entire KERS package, aside from the Battery cells. So now the MGU is a wholly Mercedes AMG part.

The MGU fits to the front of the engine and driven from a small set of gears

With KERS effectiveness proven in 2009, it was possible to have the cars designed around it, rather than it be an optional fitment. So the packaging was revised and the entire system integrated into just two units. The MGU remains attached to the front of the engine, still driven off a spur gear on the nose of the crankshaft. While the KBP and PCU are now integrated into a much smaller single package and fitted under the fuel tank. The unit bolts up inside a moulded recess under the monocoque, the unit being attached using four vibration mounts, and then a closing panel and the cars floor\plank are fitted under it.

The 2009 battery pack (yellow) is now integrated with the power electronics (not shown) in a single unit under the fuel tank (red).

It’s this integration of the batteries and power electronics that has has really slimmed the 2011 system down. Mercedes AMG now quote 24kg the entire KERS, much of the 3kg weight loss being down to the reduction in the heavy power cabling between these units.
Not only is the packaging better, but the systems life and efficiency is too. Round trip efficiency stands at a stated 80%, which is the amount of power reapplied to the engine via the MGU after it has been harvested and stored. Improvements in efficiency being in both the charge and discharge phases.
Battery pack life was extended to as much as 10,000km, several times the 2009 predictions that batteries would need replacing every two races (2,400km). Over this period, the cells do not tend to degrade, as the team manage the unit’s condition (‘State of Charge’ & temperature) throughout the GP weekend to maintain their operational efficiency.
The 80hp boost KERS provides, stresses the engine. This was well known back in 2009, but for 2011 along with DRS the car can be several hundred revs higher than the usual EOS (end of straight) revs. Mercedes AMG quoted 15-25% more stress for a KERS and DRS aided lap, this needing to be taken into account when the team monitor the engines duty cycle, thus deciding when to replace it. Mercedes conducted additional dyno development of the engine being kept on the rev limiter to fully understand and counter this problem. This work paid benefits; Hamilton ran many laps at Monza bouncing off the rev limiter along the main straight, while chasing Vettel.

KERS in use
Although the max 60KW (~80hp) output can be reduced from the steering wheel, its normal for the driver to use the full 80hp boost each time they engage the KERS boost. With a reliable KERS, the driver will use the full 6s boost on every lap. Media reports suggest Red Bulls iteration of the Renault KERS does not use this full 60kw. Instead something like 44kw, providing less of a boost, but allowing smaller batteries to be used. The loss in boost being offset by the overall benefit in car packaging.
The driver engages a KERS boost either via a paddle or button on the steering wheel, or by the throttle pedal. The latter idea being a 2009 BMW Sauber development, where the driver pushes the pedal beyond its usual maximum travel to engage KERS. Nick Heidfeld brought this idea to Renault in 2011 and the over-extended pedal idea has also been used for DRS too.
Once the driver is no longer traction limited out of a turn, they can engage KERS. Usually a few small 1-2s boosts out of critical turns provides the ideal lap time. It’s the driver who has to control the duration of the boost, by whichever control. As with gear shift the drivers can be uncannily accurate in their apportioning of the boost around the lap. It’s suggested that the 2009 Ferrari system apportioned the duration of the KERS boost via a GPS map, the driver simply presses the button and the electronics gives them the predetermined amount of boost. This solution came as surprise to Andy Cowell, so one wonders if this is legal or perhaps if the report is true.
From on board shots, we’ve seen the steering wheel has an array of LEDs or numerical displays to show the driver the boost remaining for that lap. The SECU will have control code written to prevent overuse of KERS around a lap.
Typically the battery will hold more charge than a laps worth of harvesting\discharge. So that any unexpected incidents do not leave the driver without their 6s of boost.
In use KERS can be used in several different ways. When lapping alone KERS typically gains 0.45s per lap, although this varies slightly by track. Along with DRS is can boost top speed by 12kmh. As explained the driver uses a pre-agreed amount of boost, decided from simulation work done at the factory before the race. So the planned strategy of KERS usage will be used in practice, qualifying and in parts of the race. However in the race the driver can use KERS tactically to gain an advantage. Drivers are able to use more a KERS boost to either overtake or defend a position. One feature of 2011 along with the Pirelli tyres being in different condition during the race, was the driver’s freedom to alter their racing line and use their grip and KERS to tackle their rivals.

KERS future
KERS continues in its current guise for another two years, then for 2014 along with all new engine regulations there will be a new format KERS. Energy recovery will be from different sources, so the overriding term for the hybrid technology on the car will simply be ERS (Energy Recovery Systems). However KERS will still exist, harvesting energy from braking, but will have a greater allowance for energy stored and reapplied. But, there will also be TERS (Thermal Energy Recovery), which a MGU harvesting energy from the turbocharger. Overall ERS will provide a third of the engines power for some 30s of the lap. No longer will the driver press a button for their KERS boost, it will be integrated in their demand for power from the throttle pedal. The electronics will be constantly managing the Powertrains energy, harvesting and applying energy based on whether the driver is on or off the throttle. In 2014 Powertrains and ERS is set to become very complicated.

McLaren: Indian Front Wing Analysis

McLaren tested its new front wing in first practice for this weekend’s India GP. The new front wing is a hybrid of the current wing and a revised main plane. McLaren has been alone in running a main plane with two distinct sections; the geometry of the wing is split between the span which sits ahead of the wheel and the inner span which sits in clearer air. This split wing has been run since Singapore 2010 (shown inset on the illustration).

The new wing has a straight mainplane profile, the old wing was split into two section (inset)

The new wing has a straight mainplane profile, the old wing was split into two section (inset)The new front wing maintains a consistent profile across each span, making the wing appear far simpler. Whatever gain the team found from the split design has been won over by the gains from a wider single profile. Perhaps the wake structure of the old split wing worked at the expense of peak downforce, as the new wing clearly has a larger working area as there isn’t the need for the complex join midway across its span.

Clearly the wing now has more working area, without the complex joint

Although the main plane is new, the wing retains its endplate arrangement, with the wing curving down to form the lower part of the endplate, which is near standard practice for this year. The upper part of the endplate is formed by a vane which also mounts the outer cascade winglet. Both the cascade elements have been retained – the ‘r’-shaped double element vane now mounts directly to the wing rather than to the complex metal section joining the two different wing spans.

McLaren McLaren uses two cascade elements: an inner

Thanks to Andrew Biddle (andrewbid@gmail.com) for his assistance as Copy Editor

Front Anti Roll Bar Solutions

An excellent Sutton Images picture seen on F1Talks.pl, taken through the aperture on the front of the McLaren has given us a rare chance to see the set up of the front suspension.

(http://www.f1talks.pl/2011/08/25/czwartek-na-spa/?pid=4590).

Typically most teams follow the same set up for the front suspension in terms of the placement of the rockers, torsion bars, dampers anti roll bars and heave elements. As unlike with rear suspension, the raised front end almost dictates a pushrod set up in order to the get the correct installation angle of the pushrod. However the McLaren antiroll bar shows there is some variation in comparison to the norm and also highlights Ferraris similar thinking in this area.

In comparison to my more recent posts, this is not a breakthrough in design, simply a chance to see the teams playing with packaging to achieve similar aims.

Typical front suspension

As an overview of the conventional of the rocker assembly in the attached diagram shows the rockers are operated by the pushrod, a lever formed by the rocker operates each of the suspension elements. Compressing the heave spring and wheel dampers, extending the inerter and twisting the torsion bars.

A typical "U" shaped ARB: Arms connect the torsion bar to the rockers via drop links

Typically teams use a “U” shape anti roll bar (ARB). In this set up the antiroll bar is connected to the rocker via drop links, and then each arm twists the torsion bar when the car is in roll. When the car is in heave (car going up and down, no roll) the ARB simply rotates in its mounts and adds no stiffness to the suspension. Different torsion bars in the anti roll bar create different roll stiffness rates for the suspension. Teams will either switch the entire ARB assembly for a different rate ARB. Red Bull have engineered their ARB for the torsion bar to be removed transversely through the side of the monocoque, in a similar fashion to removing the normal torsion bars.
However McLaren and Ferrari have gone a slightly different route.

Mclarens ARB

McLarens ARB is formed of two blades joined by a drop link

In McLarens case their ARB is a simple blade type arrangement. These blades are splined to each rocker the blades are joined at their ends by bearings and a drop link.

In roll, the blades react against each to create roll stiffness

When in roll the rockers rotate in the same direction, one blade goes down and the other goes up, the stiff drop link transfers these opposing forces and the blades flex. These opposing forces add stiffness to the front suspension in roll.

In heave, the blades move together

In heave the rockers rotate in different directions, both blades move down and the increasing gap between their ends is taken up by the drop link. So the blades do not flex and do not contribute to heave stiffness.
Different thickness blades create different roll stiffness; they must be removed from the rockers and replaced to achieve this.

Ferraris ARB

Ferraris ARB uses two blades joined by an elegant arched guide

Ferrari have used this solution at least since the late nineties, the idea has been seen on older Minardis too. I suspect the idea was taken to Minardi by Gustav Brunner, who may also be the creator of this elegant solution.
Similar to McLaren the roll stiffness is provided by blades splined to the rockers. But the connecting mechanism is instead a single bearing sliding inside an arched guide. Just as with McLaren ARB, when in roll the two ends push against each other to create the reaction force to prevent roll. When in heave the bearing slides through the arc of the guide and no force is passed into the suspension.

Summary
I don’t believe either of these solutions has a compliance benefit over the other. The McLaren\Ferrari systems may be take up a little less space inside the nose and may weigh a little less. But both will be a little more complex when changing the roll stiffness.

Assemblies

McLaren: Suzuka upgrades and design overview

McLaren have proven to be Red Bulls nearest competitor for most of the season. While not quite having the same raw pace as the RB7, the MP4-26 is as fast on race day and arguably can be easier on its tyres. Having started with two bold concepts the “U” shapes sidepods and the mysterious “Octopus” exhaust, the design had to be compromised to ditch the complex exhaust and revert to a Red Bull style outer blown diffuser. Leaving McLaren with a large amount of space under the gearbox, that was supposed to package the exhaust. This left the car with a higher rear CofG without the benefits of the exhaust to offset it. So it’s been remarkable that McLaren have been able to morph the initial concept into a race winning, Red Bull baiting package.
The pace of development never slows, So McLaren arrived at Suzuka with a new diffuser detail and another iteration of its Silverstone short-chord rear wing.

Following a lot of the rest of the paddock , McLaren added a diffuser flap across the top edge of the diffuser exit. The flaps profile only being broken by a large gurney flap under the rear crash structure. As already discussed in the Red Bull Monza diffuser article (https://scarbsf1.wordpress.com/2011/09/22/red-bull-monza-diffuser-analysis/), this flap is an evolution of the trailing edge gurney, used to create lower pressure aft of the diffuser for more downforce. McLaren can run such a large central gurney flap as it sits in a 15cm window in the bodywork rules that allow taller bodywork. Its also beneficial as the raised rear crash structure (for the “octopus” exhaust) allows a good airflow to pass underneath it towards the gurney.

Again we saw McLaren run the short chord DRS rear wing, allowing the team to use the DRS more frequently during qualifying runs. This wing has already been detailed in the blog (https://scarbsf1.wordpress.com/2011/07/14/mclaren-new-drs-rear-wing/).

Further down the car, we can see the rear brake duct cascade. Rules allow 12cm of bodywork inboard of the rear wheels, there is no stipulation that these function as brake cooling ducts, so teams exploit this for ever larger stacks of aerofoil sections to gain downforce directly acting upon the wheels.
McLaren have also altered their exhaust system over recent races, switching from a simple oval profile tail pipes, for pipes that pinch-in to form a nozzle at their exit. Also the detailing around the floor area varies by track, with more or less floor being cutaway around the exhaust exit. This alters the amount of exhaust flow passing beneath the floor to suit differing ride heights. As one of the functions of the EBD is to act to seal the diffuser, often likened to a virtual skirt. The high energy exhaust gas, prevents other airflow entering the diffuser, thus maintaining downforce.
Its no surprise given the proximity of the brake ducts to the exhaust outlets, that the lower stack of brake duct aerofoils are heat protected. No doubt some of the exhausts energy is used to drive airflow under the ducts to create more downforce.

McLaren use a split cooling outlet set up, rather than Red Bull who tend to focus all the outlet area into the large bulged exit high up on the engine cover. McLaren’s main outlets are the exit to the sidepods coke bottle shape. With outlet area to the side of, and above the gearbox. This is aided by 3-slotted louvers on the flanks of the sidepods.

Lastly McLarens unique sidepod design is clear to understand from this angle. The “U” pods create a path for the airflow passing over the centre of the car, to reach the rear wing relative unobstructed. Typically airflow closer to the cars centreline is cleaner and has more energy. This is why designers tend to use this airflow to feed the sidepods for cooling purposes. What McLaren have done is to compromise on the cooling efficiency for greater rear wing performance. The small fin inside the channel is used to create a vortex to main the airflows energy and direction through the channel.

Analysis: McLarens Rear Wing Vapour Trails

Picture courtesy of F1Pulse

A feature of F1 for many years were the vapour trails spiralling off the rear wing tips. This phenomenon largely disappeared a few years ago, but was apparent once more on the rear wings of the McLarens at the recent damp race weekends. So what are these vapour trails and why do McLaren tend to create them more than other teams?

They are in fact more correctly termed ‘vortices’, they are created when the pressure differences are created at the wing tip. As you get high pressure above the wing, low pressure beneath and near ambient pressure to the side of the endplate. When these three flows meet, the higher pressure flow naturally moves towards the low pressure areas. This sets up a tumbling motion and a spiralling flow structure is created. As we know from the aerodynamicists use of vortices to shape and alter flow over other areas of the car, vortices are extremely high energy structures. But with them comes a lot of drag. These wing tip vortices rise upward and outward from the rear wing tips and eventually flatten out behind the car as their energy is dissipated in the free stream flow around the car.
The greater the pressure differential, the greater the vortex created, and this is generally seen better in damp conditions as the water in the air concentrates into the vortex to become visible as a vapour trail.

In years gone by, the site of vortices spiralling from wing tips was seen as a good thing, as the belief that the wing is working hard. To some extent this was correct, with a simple wing the fact that it can create visible vortices did prove the wing was highly loaded. However the drag that it created was less well understood. Since the early 2000’s teams have sought to reduce this pressure difference at the wing tip, in order to reduce drag. Several solutions have been tried to alleviate the pressure differences at the wingtip.

As F1 rear wing have such small aspect ratio’s, (width versus length), there’s little that can be done to reduce this high pressure created towards the endplate without sacrificing total downforce created by the wing. Teams have experimented with twisted wing profiles, reducing the angle of attack of the wing cross section nearer the endplate, to reduce the high pressure created above the flap. But this in turn reduces the downforce created by that section of wing. At tracks where lower downforce is required, teams will still ease the loading of the outer part of the wing, centering the pressure distribution in the middle of the wing.

The other option is to allow the whole span of the wing to be aggressively steep, but use other methods to reduce the pressure difference at the wing tip. Firstly teams such as BAR created a cut-out in the end plate ahead of the flap, this allowed some of the high pressure above the flap to bleed off outside the flap, negating the pressure difference and therefore the strength of the vortex. But this was a fairly blunt solution, so teams created the now-common louvers in the endplate.

This solution directs some of the high pressure air above the wing to the wing tip in a more elegant way. Renault, then latterly Honda and McLaren created a different approach by merging the flap into the endplate, this creates a small gap to direct the high pressure flow to the wing tip.

In the past two seasons reducing this effect has been negated somewhat by other means to reduce the rear wings drag. In 2010 the F-duct allowed the driver to reduce the rear wing downforce and therefore drag. In wet races in 2010 we saw the McLaren’s exit a turn, as speed built up the vortices would appear, then as the driver closed the cockpit control duct the rear wing stalled downforce\drag was instantly reduced. As the driver did this, the vortices also disappeared. This allowed us to see just how soon the F-duct was engaged out of turns.
With the F-duct banned and DRS allowed for 2011, teams are able to adjust the rear wing in qualifying and for overtaking in the race. Depending on the teams qualifying\race strategy, they have redesigned their rear wing to have a different flap size. A small flap, means that the DRS effect is larger, more downforce and drag are shed for more top speed. However the smaller flap means that the rear wing is limited in the downforce it can create, as the sot gap is further back on the wing and separation is likely with aggressive angles of attack. Most teams have followed a design path that errs on this level of DRS effect. As the wing tip is not loaded so highly, there are few vapour trails created.
McLaren however have been almost alone in creating a DRS wing with a large flap, this creates the opposite characteristics of a small flap wing. Less DRS effect is created, but the wing can create a larger amount of downforce when DRS is not activated. Thus their rear wing is steeper and more heavily loaded at the wing tips.

Its for this reason that McLaren tend to be the team in 2011 that create the vapour trails on damp days. McLaren do however have a small flap DRS wing in development. We can expect this to create less trails than their current if it gets to be run in the damp.

 

McLaren New DRS Rear Wing


McLaren have followed their own strategy on the DRS rear wing this season. In contrast to other teams McLaren have designed their wing for the best Non-DRS Performance, thus when deployed the DRs provides a more modest boost in speed. This Strategy appears to have been reviewed as their new rear wing tested at Silverstone shows.

Already being one of the fastest cars in a straight-line, McLaren perhaps haven’t needed to exploit DRs as much as other teams. Their current wing sports a large flap which due to its geometry flattens less when DTS is deployed. See DRS Geometry. But we have seen that McLaren can deploy their DRS less on Q-laps and despite their KERS and speed, sometimes struggle to pass other cars. SO their new wing exploits more conventional geometry with a shorter chord flap that flattens out more completed to maximise the drag reduction system.


Along with the shorter flap other aspects of the wings design have changed, the slots on the endplate have been made even more shapely and the endplate merged into the flap. These slots have been a feature on F1 rear wings for nearly ten years. They aim to take some of the high pressure air above the wing and direct it out through the endplate at the wing tip. This reduces the pressure differences that create the vortices at the wing tip, these vortices often seen in damps condition create a large amount of drag, reducing them further aids top speed.

Although the slots are so curved it’s hard to detect, but the sections between these slots on upper part of the endplate are directly joined to the flap, thus the flap is remotely mounted, the loads pass through these three narrow section of endplate. This must be quite a structural feat. This design harks back to McLaren’s 2008-209 wings (see below) which mimicked the Renault practice of merging the endplate into the flap. Again the aim of this design was to manage the pressure differences at the wing tip for reduced drag.