Red Bull: Bahrain Sidepod Analysis

Having been slightly off the pace in the opening three races, Red Bull clearly do not have the RB8 working as they had expected. Pole position in Bahrain doesn’t prove their issues are over, but the car sports a revised sidepod set up this weekend and this has perhaps has unlocked the potential in the car. The new sidepods are a revision of the Version2 spec sidepod/exhaust set up. The Bahrain spec simplifies the sidepod, removing the complex crossover tunnel under the exhaust ramp.

Exhaust Versions

Sidepod Version1

At the cars launch the RB8 features a simple Version1 exhaust set up, aimed at being a benign solution to get the bulk of testing out of the way, without interference from complex exhaust issues. Then later in testing the focus could switch to the greater potential performance offered by the V2 set up. The V1 set up placed the exhaust in board and rearward, blowing under the top rear wishbone. The exhaust flux blew along the tail of the bodywork and under the beam wing. Despite suggestions at the time that this set up was a novel exhaust blown suspension set up; the solution was never intended for race use.

Sidepod Version2

Then on Day11 of the 12 day preseason testing schedule, the V2 sidepod\exhaust appeared. A more complex solution than either the McLaren or Sauber set up, the sidepod aimed to both direct exhaust flow at the diffuser and route the sidepods undercut flow to the centre of the diffuser. To do this the sidepod had a more outboard and rearward exhaust position.

The exhaust blows down the tail of the sidepod, over a ramp made to try to attach the exhaust flow to the bodywork via a coanda effect to direct it in the correct gap between the rear tyre and diffuser. This is the same area the teams aimed their exhausts directly at last year. This area helps both seal the diffuser from flow blown laterally from the rear tyres and also the greater mass flow of the exhaust plume creates more flow through the diffuser, with both effects adding downforce. This solution follows the same path as the much applauded Sauber solution. Although the two systems were developed in parallel and RBR did not copy the Sauber after seeing it launch. The RB8 always was planned to run the V2 set up.

V2: a tunnel is created under the Exhaust ramp bodywork (yellow)

V2: Flow from the sidepod undercut passes through the tunnel (yellow)

To keep the airflow passing over the top and centre of the diffuser, teams direct the fast moving flow from the sidepods undercut to this area. In Red Bulls case, the path of this flow is obstructed by the exhaust ramp and plume. To overcome this Red Bull have simply created a tunnel for the air to pass under the exhaust ramp and remerge towards the centre of the diffuser. This solution looks like is major aim was to direct flow to the start motor hole, an area exploited by ductwork on the 2011 RB7. Having more airflow passing into the starter motor hole, makes the hole act like a blown slot, making the airflow better up and under the middle section of diffuser for more downforce. Creating a crossover effect is somewhat like McLarens bulged exhaust fairing, that allow both the exhaust to be directed down to the diffuser edge by the downwash flow over the sidepod, but also creates a channel beneath the exhaust bulge to allow the undercut flow to reach the centre of the diffuser.
So it seems Red Bulls V2 floor make the best of the Sauber Coanda solution and the McLaren undercut solution.

What are the issues?
However this tunnel is compromised by the post-2009 area rules. Sidepod bodywork 50mm above the floor (actually 100mm above the reference plane) must meet tangential and minimum radius regulations. This means Red Bulls tunnel is limited to slightly less than 50mm in height, with a sharp top edge.

It seems it’s this crossover tunnel on the V2 sidepod that is an issue with the car. Recent flowviz tests in free practice were focussed specifically on the tunnel, as well as tests with an array of aero sensors trailing the diffuser in Bahrain. Also an insider tells me that the Red Bulls starter motor might not be creating the accelerating airflow into the steep middle section of diffuser that was envisaged. Instead the starter hole works better when blocked off. Perhaps this crossover tunnel is not flowing correctly to the centre of the diffuser and altering the accuracy of the exhaust flow towards the tyre\diffuser intersection.
If the exhaust flow cannot reach the tyre\diffuser gap accurately or perhaps more importantly consistently, then the driver will have a car that sensitive to throttle position.
Red Bull have been alleged to have clever engine mappings, cutting down to four cylinders at larger throttle openings at lower revs. This could either have the effect of a softer power delivery for better traction, of greater exhaust flow for more downforce at lower revs. Red Bull and Renault may still be finding ways to gain performance from exhaust mappings and these mapping have been investigated the FIA and shown to be within the regulations.
With several issues around the way the exhaust affects the cars handling, Red Bull said in China that the V2 sidepod was the potentially better solution, but the V1 set up gave Vettel more confidence. Horner admitted that it was possible to get the performance of the V2 with the feel of the V1. At Bahrain it appears that this is what RBR have done.

Sidepod Version 2.1

V2.1: With no tunnel the exhaust flow can pass without interference to the diffuser

These issues may explain the Bahrain sidepod upgrade. This new sidepod set up appears to be a rework of the V2 sidepod, most of the shape remains the same and the exhaust appears to be in the same position. So it looks like the moulds were altered to close off the cross over tunnel create a V2.1 sidepod.
With the tunnel closed off the issues complicating the exhaust and starter motor hole flow have been cleared up. But there still remains an issue with how the sidepod undercut flow reaches the rest of the diffuser. Sauber appear to manage this, but there still may be some potential airflow performance that is lost with this set up. Although the overall effect of an exhaust aimed accurately at the tyre\diffuser gap may be a greater gain that that loss.
However with the tunnel gone there is a less complex route for the exhaust to reach the diffuser. With the exhaust flow better managed the intended exhaust effect will more consistent resulting in a better feel for the driver at different throttle positions and car attitudes.

V2.1: Slots in the floor aid the effect in sealing the diffuser

It’s notable that Red Bull have also reintroduced the slots in the floor ahead of the rear tyres, these haven’t been seen for a couple of years, their function is to inject some higher energy airflow into the gap between the tyre and diffuse. This, like the exhaust blown diffuser, offsets the sidewash (known as ‘Squirt’) created by the rear tyres impinging into the diffuser. Again this will all result in greater rear downforce.

If this is the first solution for Red Bulls woes, then it will be interesting how the team develop from the V2.1 sidepod. Perhaps the tunnel will reappear in revised form or a McLaren style solution will be tried.

Red Bull KERS: Floor Mounted Super Capacitors?

In the second year of their use of RenaultSport’s KERS, Red Bull appear to have found a new mounting position and format for their KERS energy storage with what appear to be floor mounted super capacitors.  Super Capacitors (Supercaps) are an alternative energy storage to Lithium Ion batteries, using very much the same technology as smaller capacitors used in electronics

2011 was Red Bulls first year with KERS, having chosen not to run it in 2009 as it compromised their design too much. As is typical for Newey, Marshal and their design team the KERS installation was unique and uncompromising, with its energy storage in two packs either side of the gearbox and a smaller unit inside the gearbox. Reliability issues plagued the team throughout the year, with the batteries succumbing to heat and vibration.

Floor mounting

So with a year’s understanding under their belt and the newly confirmed status as the RenaultSport factory team, the RB8 has taken a step forwards in KERS packaging. Now the energy storage appears to be slightly revised, with the unit inside the gearbox swapped for floor mounted units. In this exclusive picture from MichaelD in Melbourne, we can see the units remain fitted to the floor when it’s removed. The two carbon fibre cases are closed with aluminium tops and are provided with electrical and cooling connections. They sit in the final section of flat floor known as the boat tail.
Having the units placed on the floor, as opposed to between the gearbox and engine, means they can lower the Centre of Gravity. Also being quite heavy they are placed near the rear axle line to suit the mandatory weight distribution. As mentioned the units are supplied with a common cooling circuit, one pipe routes around the back of the floor to link the devices. There are also a number of electrical connections for both connecting to the KERS Power Control Unit and for monitoring their status. Quickly detachable connectors are used to allow rapid removal of the floor keeping the units in place.

What are they?
While trying to confirm these items as part of KERS, I’ve learnt some new facts about KERS in F1, which might help to explain these devices. It might convenient to call these units ‘batteries’; however their actual design and purpose might not accurately tally with that term.
It’s possible they could be part of the energy storage system for the KERS, either as Li-ion Batteries or Super Capacitors (supercaps), or they could be an energy dump used to reduce the load on the battery when harvesting power under braking.

Energy dump
The way the FIA F1 KERS rules are written there is a limit on the amount of energy that can be stored and reused. These limits are not in line with what is actually achievable with current technology. Teams are effectively capped on energy, as they could store and re-use far more. Part of the problems is that under braking, the energy harvesting is capable of producing more power than they are allowed to put into the battery. So the teams control the harvesting rate according the driver’s style and the circuits demands. Even then the harvesting potential is hard to predict. Rather than stopping the harvesting mid braking, which would unsettle the car. The teams keep the same harvesting rate, but dump the energy through a series of fixed rate resistors. Obviously these resistors quite large and create a huge amount of heat. This would explain their low position and cooling requirement.
These floor mounted devices might be the energy dumps, but they are particularly large and with increased experience of KERS teams are getting better at controlling the harvest rate, so shouldn’t need such a large dump. So it’s possible, but unlikely these are energy dumps.

Energy storage solutions

Li-ion batteries
Typically current F1 cars use dozens of Li-ion cells packed into an array forming a ‘battery’ pack. This KERS Battery Pack is commonly a single part sat under the fuel tank. Although often used as a single battery, the unit can be broken up into a set of batteries in series.
In 2011 Red Bull clearly split this part up into several smaller Battery Packs, there being the two aforementioned units either of the gearbox and another in the gearbox. Although interconnecting these parts with cooling pipes, high current cable and sensor cabling adds some weight, this does provide a nicer packaging solution. It’s logical to explain these new floor mounted parts as batteries. However they do not look like the battery packs seen in the gearbox last year, or on other cars. Being on the floor of the car they are subject to even more danger from impacts as well as the heat and vibration that caused issues last year.

As their design does not tally with existing Li-ion battery packs, then they might still form part of the energy storage element of KERS. So if not Li ion batteries then they might be the next bet alternative ‘super capacitors’. Supercaps have far more energy storage than the capacitors we common see on household electronics. They are far more efficient in storing and releasing energy quickly, with less losses and do not degrade as quickly as Li Ion batteries do. However they are not as efficient in storing larger amount of energy for longer periods.
A link between Red bull and supercaps is RenaultSport. Renault already uses supercaps as onboard storage for both formula Renault 2.0 and 3.5. In the 2012 FR3.5 series, the KERS only uses Supercaps, not a conventional battery.
So it’s possible the Red Bull RenaultSport KERS uses hybrid storage with a mix of Li ion cells and Supercaps, using the supercaps for short term storage and for more immediate bursts of acceleration. While the Battery provides the longer term storage between corners and for more sustained discharges of energy.
It’s believed that other teams are already using a mix of supercaps in their KERS Battery Packs to reduce the unit’s size and provide the option for a quick storage\release of energy.  So I believe that most likely these devices are Supercaps.  With revised KERS regulations coming for the new Powertrain in 2014, more use canbe made of Supercaps in both the Kinetic and Thermal Energy Recovery systems.  Experience of these componenents now, will be an important part of the development of the 2014 systems.

More on Supercap KERS via Race Engine Technology Magazine

Mercedes DRS Duct: How it links to the front wing

It’s now clear the Mercedes DRS-Duct system does in fact feed the front wing to stall the wing for better aero performance. Pictures have emerged showing how the system links the front wing to the rear wing.
Mercedes launched their 2012 car late, by missing out on the first test. It’s not clear if this delay was due to the need to repackage the car around the DRS duct, but clearly the Mercedes car needed some special adaptation to accommodate the car ducts along the car.

The plate attached to the flap uncovers the DRS duct - Copyright MichaelD

As I’ve already reported ( the Mercedes W03 has a unique system linked to the DRS. This uses the opening of the DRS flap on the rear wing to open a duct that sends high pressure air to other parts of the car. It was logical for many people to observe this was similar to the 2010 F-Ducts and stalled the rear wing for greater speed. As I pointed out in my first article on the system, I believe it is the front wing that was receiving this airflow in order to stall the front wing.
We saw from pictures of the Schumacher car in Melbourne, that there are slots under the front wing, this proves the front wing stalls, but not by which method; either the passive nose hole apparently tested last year or the DRS duct.

We can now see from images of the carbon fibre ‘cage’ fitted to the front bulkhead of the Mercedes that two tubes emerge and curve down to feed the flow into the front wing via the nose cone.

However this does not discount the rear wing is also being blown and stalled by the DRS duct, but I have yet to see any evidence of slots in the underside of the rear wing profiles or endplates. AUTOSPORT reported these were seen in testing, so perhaps there remains the chance the system could be used for both wing front and rear.

A complete explanation of why Mercedes use this system is in my first article on the subject.

How does it work?
When the driver has the DRS flap closed on the rear wing, the front and rear wings operate as usual, with no blown effects being used. Both wings create downforce in the usual way.

The DRS-Duct feeds through the hollow endplate towards the beam wing - Copyright MichaelD

When the driver opens DRS, the flap uncovers a pair of openings on the rear wing endplates. A passageway moulded inside the unusually thick endplates, creates a duct that feeds the DRS-duct system. These openings are fed with high pressure air, which has formed on top the rear wing.

Copyright MichaelD

As DRS rear wings use a very short chord flap, the main plane of the wing still has some angle of attack towards its trailing edge. This high pressure region feeds the ducts and each side appears to have its own dedicated duct from rear wing to front wing. There being one left and one right side duct, although it’s possible these ducts are linked to balance the system, left-to-right, as in yaw one duct might not have the same pressure feed as the other.
The endplate ducts flow in a “question mark” shape around the top and front of the endplate towards the beam wing. The airflow then passes inside the beam wing profile to a bulged fairing that directs the ducts forwards under the engine cover.

The beam wing duct leads (where the loose tape is) into two further ducts passing either side of the car Copyright

These ducts are clearly visible from rear view shots; indeed in testing we saw one picture of the ducts unconnected to the beam wing. These ducts pass either side of the engine to the rear bulkhead.  A clear view of the ducts can been passing from the rear wing to the chassis in this screen shot.

Hidden by a white cloth the beam wing duct leads forwards into two ducts passing around the engine (both ducts removed in this picture) Copyright Mercedes AMG

I assume they pass outside the fuel tank area and into the cockpit area, where they then pass along the roof of the footwell to emerge at the front bulkhead. This tortuous routing within the tight confines of the car probably explains why two ducts are used and not one larger duct.

Copyright MichaelD

With the nose cone removed the front bulkhead is visible, like other teams Mercedes fit a carbon fibre moulding to aid refitting the nose accurately and without damaging any parts during rushed pitstops. In Mercedes case the ‘cage’ like moulding mimics the shape of the cosmetic panel fitted atop of the structural element of the nose cone. This cosmetic panel was the dispensation teams were given to fair-in the 75mm nose step. In Mercedes case the part of the nose cone that does the impact absorption is the very rounded and pointed lower section, the upper section probably provides some degree of bracing for the structure, but is not the same thick sandwich construction of the lower nose section.

Hidden behind this carbon fibre cage on the front of the chassis are two ducts, of similar size to those passing through the engine bay (as seen arrowed  in this picture ). The ducts turn 90-degrees to face downwards. When the nosecone is fitted, these ducts connect with corresponding holes in the nose cone to pressurize the nose and this in turn feeds the airflow down the front wing pylons to the front wing. Underneath the front wing there is a pair of slots. When DRS is open the flow through the ducts blows through these slots and stall the front wing.

For rival teams to replicate this system, they will need to find space to package the ducts inside the footwell area. As we saw in 2010, teams can be very imaginative in creating way to package this sort of solution. But this will take time and may explain some team’s opposition to the legality of the system.

Blog Update: More posts coming soon

I just wanted to post a quick update about the blog. You will have noticed I’ve not posted any new articles since the McLaren launch, meanwhile my work is appearing in other places.

I’ve been lucky to have my work published in several places this year, being the most notable one, but also several magazines including Motorsport, Racecar Engineering and Autosport (Japan).

As my Autosport articles appear in the Autosport ‘Plus’ section, which is the subscribers section, many of you have voiced concern my work will again disappear behind a paywall. I hope my work does appear more regularly in, but this will not be the alternative to my blog.

I have not forgotten the blog. My published work along with the video clips recorded for ‘The Flying Lap’, numerous tweets and the day job, mean I am simply struggling to find time to complete the words and in particular the illustrations for the blog. I have all the cars analysis coming over the next few days, plus some specific features on the trends we’ve seen so far on the new cars.

Thanks for your patience, normal service will resumed shortly.


Video: A1GP Frontal Impact Test

This video was kindly supplied by John Travis Technical Director of Trackcreate Ltd , the designer of the A1GP car along with his team A1GP Technology Ltd and is also one of the partners in RaceStaff.

The A1GP Ferrari car was built to satisfy the FIA 2004 F1 crash test regualtions. Thus the tests were carried out the Transport Research Laboratories (TRL). For this test, the complete monocoque and nose cone assembly must be complete and fitted to the test sledge weighing a total of 780Kg. To make the test representative, the fuel tank must be filled with water and a crash test dummy wearing seat belts must be installed. Travelling at just over 30 mph at the point of impact, the driver must not be a peak deceleration greater than 60g and the monocoque\trolley must not average more than 40g. As well as this the monocoque itself, seat belts and fire extinguisher must be intact after the crash. Its clear to see that at this rate of deceleration the driver and seat belts display alarming elasticity, although this is part of the mechanism to reduces the loads and potential for injury.

16.2 Frontal test :

All parts which could materially affect the outcome of the test must be fitted to the test structure which must be solidly fixed to the trolley through its engine mounting points but not in such a way as to increase its impact resistance.

The fuel tank must be fitted and must be full of water.

A dummy weighing at least 75kg must be fitted with safety belts described in Article 14.4 fastened.

However, with the safety belts unfastened, the dummy must be able to move forwards freely in the cockpit.

The extinguishers, as described in Article 14.1 must also be fitted.

For the purposes of this test, the total weight of the trolley and test structure shall be 780kg and the velocity of impact 14.0 metres/sec.

The resistance of the test structure must be such that during the impact :

– the average deceleration over the first 150mm of deformation does not exceed 5g ;

– the average deceleration of the trolley does not exceed 40g ;

– the peak deceleration in the chest of the dummy does not exceed 60g for more than a cumulative 3ms, this being the resultant of data from three axes.

Furthermore, there must be no damage to the survival cell or to the mountings of the safety belts or fire extinguishers.

As part of the RaceStaff sponsorship of ScarbsF1, We will have more videos of the A1GP car testing next month.


Analysis: Abu Dhabi Test – 2012 Exhausts

Image via Williams F1

Last weeks Young Driver Test was the first chance for teams to try exhausts systems designed to the revised 2012 rules. Next year teams will have to place the exhaust exits in a specific region of the car, with further restrictions on the pipes shape and angle. These changes have been introduced to ban the blowing of the diffuser for aerodynamic gain. While I have detailed these rules previously (, we can start to look at what the teams have been doing in Abu Dhabi.

Three teams brought revised exhausts, most notably Williams who ran their exhaust in all three days of the test, while Mercedes did less running with their interim set up and Ferrari tried a non legal exhaust on just one of the testing days.


IR cameras point upwards towards the wing and pods on the wing house sensors (Image via Williams F1)

Shunning any running with an Exhaust Blown Diffuser (EBD), Williams ran in Abu Dhabi with an exhaust positioned within the correct area and orientation as demanded by the 2012 rules. Their exhaust is a simple interpretation of the new rules, with the exhaust placed close to the cars centreline and as rearwards as possible. Most interestingly the exhaust is tipped up at the maximum 30-degree angle. This positioning suggests the team are trying to blow the centre of the underside of the rear wing. While I have proposed more radical solutions in my previous article, this does show that teams are to look at blown rear wing effects, as opposed to purely aero neutral exhaust positions. Exiting the exhaust pipe at great speed and temperature, the exhaust plume will hit the underside of the rear wing. This would have the effect of speeding up the airflow under the wing decreasing pressure and creating more downforce.

Williams Exhaust is low and rearward within the legality zone (yellow) and points upwards at a max of 30-degrees

However this effect is more complex than a simple jet of gas hitting the rear wing. Gordon McCabe’s Blog ( highlighted some research by Prof. K. Kontis & F. L. Parra from the University of Manchester on the effect of exhaust gasses on an F1 car. They found the exhaust plume passing at an angle out into the airflow created its own drag and moreover was bent backwards by the airflow at greater speeds. When this theory is applied to the Williams set up of a steeply inclined exhaust pointed towards the wing suggests some very interesting effects come into play. Firstly at lower speed the exhaust plume (jet) will be far stronger than the flow over the car. Thus this jet passes upwards through the crossflow over the car, will reach the rear wing to create more downforce.

Jet in Crossflow - low speed: unimpeded the exhaust plume blows the rear wing

At lower speeds the jet obstructing the crossflow will create drag and there will be drag induced by the greater rear wing mass flow, but being at lower speeds this drag will not be detrimental to aero performance. Then at higher speeds when the crossflow over the car has more energy the exhaust jet will start to bend backwards. Most likely moving the jet away from blowing the wings under surface. Thus the blown rear wing (BRW) effect will reduce, the car will lose some downforce and the drag induced by the blown effect will also reduce. Thus at higher speeds the car will shed drag, further boosting top speed.

Jet in Crossflow: High Speed - the faster airflow over the car bends the exhaust plume downwards away from the wing

Williams Abu Dhabi Test exhaust is not a clear sign that they will have this exact positioning for 2012, but the test will have proven the blown effect and just as importantly provided data on the heat passed over the rear wing. It was clear that the rear wing was set up with numerous sensors for vibration, heat and pressure measurement. Many of these sensors were within the rear wing flap itself, the shear number of sensors run on the wing required two aerodynamic pods mounted to the rear wing endplate to house the wiring to send the data back to the onboard data-logger. Additionally Williams ran several different kind s of thermal cameras, mounted to the rear crash structure and pointed upwards looking at the underside of the rear wing. This would not only provide actual temperature measurement, but also highlight which areas are being blown by the exhaust, somewhat like a thermal flow-viz test.


Another one of the teams late to the blown diffuser in 2011 and in particular blowing the outer section of floor by the rear wheel, Mercedes also tried a non-EBD set up in Abu Dhabi. According to earlier comments by Ross Brawn on (, the Mercedes test exhaust was not a definitive 2012 set up “”The car will be testing next week with our first interpretation of what the regulation will be.”, but merely a revised exit location to remove the exhausts effect from the rear ends aerodynamics, “This is compromised because we’re fitting it around the existing car, but we’re removing the effect of the blown exhaust to see how the car will work without that.”

The set up that Mercedes tested with was similar to Williams with the exhaust outlet focussed towards the inner\rear of the regulatory box it needs to sit within. Flanked by bodywork the exhaust did not appear to be as steeply inclined as the Williams set up. Reinforcing Brawns comments about removing the blown effect.

Pictures in gallery


Like Mercedes Ferrari run an alternative exhaust on the last day of the test. However unlike these previously two teams they did not fit a 2012 spec exhaust. Instead the cars left-hand exhaust was routed dramatically sideways to exit ahead of the rear tyre. This set up would not be legal either in 2011 or 2012, but was probably a simple to completely remove the blown effect from the rear of the car. With the right hand exhaust apparently in its normal EBD set up, the team would be able to measure the difference in pressure left to right to access the effect the exhaust is having. While a large part of development for 2012 will be aimed at getting the exhaust to do some useful work elsewhere eon the car, such as a blown Rear Wing (BRW), the team salsa need to get the diffuser and rear brake ducts working without the artificially accelerated airflow blowing over the from the exhaust. As the test exhaust does not fit into the current regulations this test would be the one place where they could do this, with permission to run such an exhaust being unlikely for a Friday practice session. So although preparation is underway for their exhaust development, Ferraris plan for their 2012 remains hidden.

Ferrari: A Chamber has been added to the Exhaust system (yellow)

One area of Ferraris exhaust development that has recently been exposed is the exhaust chamber. These devices have been rumoured for many months. Most of the rumours attributed to Mercedes engined teams, although no evidence has appeared of the system on any of their three teams cars. As reported by Giorgio Piola at the Abu Dhabi race, Ferrari had this system in place for the Grand Prix and the system remained fitted for at least part of the test. What at first appears to be another exhaust outlet joined to the secondary exhaust pipe, is in fact a closed ended pipe. This picture of the exhaust removed from the car ( via\Sutton Images), shows the large extension, which acts as a pressure accumulator when the exhaust is blowing. Then when the driver is off the throttle the pressure built up in the chamber is release, which smoothes the blown diffuser effect between full and part\closed throttle.

When on the throttle the chamber is pressurised along with the exhaust system


When off the throttle the chamber maintains some exhaust flow

Similar systems were common on Japanese 2-stroke motorbikes in the eighties, albeit placed on the inlet side of the engine (often termed ‘boost bottles’), Fords WRC car also featured a chamber on the inlet side for similar effect.

This system works on the backpressure created within the exhaust. It’s worth noting Ferrari have recently switched to the nozzle type exhaust outlets, these being narrower in cross section to that of the main exhaust pipe. Most probably these nozzles work to increase backpressure to smooth the exhaust plume at different throttle openings. Just as interesting is the switch of the Mercedes powered teams to nozzle type exits mid season, suggesting the exhaust chamber rumours may be true. It would be logical to assume that the back pressure created within the exhaust both by the nozzles and the chamber would affect top end power. But any time loss being made up by the less senstive aerodynamics.

In some respects this exhaust chamber is similar to what appeared to be a one-way exhaust valve fitted at several GPs this year. The belief being that the exhaust valve allowed the exhaust to suck in air when the driver was off the throttle, to maintain exhaust flow to the diffuser. This being a mechanical alternative to the off throttle mappings (Hot Blown\Cold Blown), which were to be banned mid season. There appears to be a move to again enforce engine mapping restrictions for 2012, so the teams will need to find ways to smooth the exhaust plume over the bodywork. But this one-way exhaust valve will be expressly banned under the 2012 Exhaust Regs. So the exhaust chamber solution appears to be a design what will become present on the many cars exploiting blown exhaust effects in 2012.