McLaren MP4-26 2011 – Fan Tail (Octopus) Exhaust

McLaren went into 2011 with an aggressive design strategy, this was a response to the poor initial form in 2010 and resulted in the dramatic “U” sidepods and a mysterious exhaust system.


It was this exhaust system that stole most of the column inches in the F1 press and the fan forums during pre season testing. One particular column fed the interest around the exhaust and christened it the “Octopus”. The article suggested the exhaust was ducted to several exits and used high temperature Glass Ceramic Carbonfibre (GCC). It went on to explain the unreliability of the exhaust solution was due to the heat making it fail.
It was true McLaren’s first tests, even from the first private shakedown runs before the public testing had started, demonstrated a problem with the initial exhaust design. But this exhaust solution was not the “Octopus” as described; in fact McLaren Technical Director Paddy Lowe explained to me at the 2012 cars launch, that “it didn’t look anything like an Octopus”. Adding “The exhaust we had was a slot, we called it a fantail”, which was a simpler, albeit still innovative solution.

Continue reading

Buy a Gift: Caterham Fastest Blogger Challenge

Buy a Gift – BuyaGift.com

Buy a Gift are a website offering “Driving experiences” with a variety of themes.
Buyagift was founded in 1999 by Dan Mountain. We started in a bedroom at Dan´s family home in Muswell Hill and after eleven successful years Buyagift HQ is now a lively, open plan office in New Barnet with over 70 employees. We have also recently expanded into Europe with our French operation, Coolcadeau.fr, in Paris and Zonaregalo.com in Spain.
Thanks to the hard work and commitment of our team we continue to grow every year; currently at a rate of more than 20 per cent. Buyagift Plc made sales of over £20 million last year in the UK and is also proud to be part of an international group of gift experience companies Smart & Co. Smart & Co operates in over 20 countries worldwide and annually makes sales of over €350 million a year.
Buyagift also has its own corporate sales division; Buyagift Corporate who specialise in incentive schemes, loyalty rewards, team building activities, long service awards, corporate gifts and prizes.
Our corporate team work with large and small companies to serve a range of needs, as well as offering competitive discounts and an unbeatable service to help you serve your clients more effectively.
For this event the theme was obviously Motorsport with 17 bloggers from a variety of backgrounds taking part. Not simply Motorsport bloggers, but health, lifestyle and general news blogs. The aim of the day was to see who was the blogger with the best skills in drifting. Clearly previous experience of any form of motorsport was not necessarily an advatange.

The car – Caterhamcars.com


The cars we used are Caterham 7’s, these are based on the classic Lotus 7. They are the latest incarnation of the breed, with 1.6l 150hp Ford Engines. The chassis is a steel spaceframe with independant double wishbone front suspension and a De Dion rear axle. To suit the Drift challenge the cars are set up with softer compound front yres and harder rears, no front antirollbar and a stiff setting on the rear ARB.

..

The Track – Silverstoneuk.com
Set out in a car park at the Silverstones circuit, there were three track layouts used as we grew in expereience. Firstly a single short cuve followed by solitary for completing a rolling donut around. This then progressed into a figure of eight track, with longer turns to drift around. After lunch the “Uber” drift course was set up with a long slalom followed by a donut cone, then another more open slalom with a final donut cone.

Drifting


Unlike track driving or road driving, drifting is a more aggressive form of driving. More abrupt inputs are used to get the rear tyres unloaded and spinning. The process is to brake hard into a turn, put on lock as the brakes come off then stabs at the throttle. The usual smooth transistion from on-off throttle and braking to turn in aren’t rewarded. It takes several runs to understand the style that is required. As the car switches from drift to grip the steering needs to return to on-centre rapidly, faster than you can turn the wheel so releasing the wheel is required to let it lightly spin through your hands before regaining a grip and steering into the next turn.

The experience


We started on the simple course with trying to get the cars tail kicked out, each driver gets two runs to perfect the technque. In the morning we had three runs on thge simple course and two runs on the figure of eight course. After each run the instructors point out issues with your technique, the constructive advice soon finds you making step improvements on each run.
Common pitfalls are using the cones as apex markers and you ending up running wide for the rest of the turn or worse oversteering into the subsequent cones. A wide entrance is required, with you needign to be 3-4 metres away and alongside the cone before turn-in, then as you come off the brakes, add steering lock and once you’re turned-in stab the power. This kicks the rear wheels out and then you keep reapplying stabs of power to keep the slide going. Being smooth like in circuit racing will just see you running quickly through the turn and not getting into a full tyre spinning slide. Every run you become more aggressive with the throttle. By the time we’ve had a few runs on the afternoons “Uber” drift track, you find the aggression is still there, but you’re merging the slides into a constant drift even with a direction changes.

After a full day with lots of runs, we had the finale. This was a single practice run, followed by more feedback, then a final run for which you’re judged by all the professional drivers and given a score. All 17 of us were given a score based on our drifting skills, which lead to the prizegiving. I came fifth with a score just 6 percent off the leader. I was pleased with that result and overall I was extremely pleased with the Caterham Drifting Driving Experience. Its not a conventional driving day, its part race driving skills and part Top Gear style hooning around with smoking rear tyres. I’d thoroughly recommend it to any petrol head

McLaren: Adjustable Rear Brake Ducts

With the switch to Pirelli tyres, their rear tyre construction has needed a lot of care in managing degradation. This drop in tyre performance happens when the tyres drop out of their operating temperature window, and this can come from the tyres running too hot or too cold. As the preceding RenaultSport article explains managing rear temperature takes a lot of effort and understanding. McLaren have been active in understanding this problem and over the past year have developed an innovative method of controlling tyre temperature via its relationship with Brake temperatures. It’s come to light in the past two races McLaren have an adjustable brake duct set up and this can have an impact on tyre temperature.

Brake discs (red) visible inside the Brake Duct

F1 carbon brake disk temperatures can peak at over 1000-degrees centigrade. The discs being 278mm diameter inside a 305mm wheel means that there is little space between the two and heat inevitably passes from the disc into the magnesium alloy wheel. In previously years this was avoided to try to reduce heat conducting into the tyre, but McLaren have found a way to harness this.

By altering the flow of heated air coming from the periphery of the brake disc, the amount of heat passed into the wheel and tyre and can be altered. Already teams tune brake cooling with different inlets scoops, but these tend to stay fixed from qualifying onwards (wet races excepted). If the team want to alter brake and thus tyre temperatures during the race then normally there’s no path open to them. However McLaren have fitted an adjustable window in the rear brake ducts. A mechanic can adjust this in the pits to tune the brake and tyre temperature to suit conditions. Depending on the wording of the Parc Fermé rule, this could also be altered on the grid as one of the areas allowed to be changed is brake cooling blankings.

The heated flow from the brakes (arrowed) exits around the brake duct

To do this McLaren have altered their brake cooling design from most other teams. More typically the round brake drum cooling ducts exit the brake flow through the rounded outer face of the duct; this passes out through the wheel spokes. McLaren’s brake discs vent their through openings in the outside of the brake drum, with its outer face closed off from the disc. So all the heated brake flow passes between the duct and the wheel before exiting through the wheel. To accommodate this flow, McLaren’s wheel spoke arrangement has been altered. The Enkei wheel features 29 drillings around the face of the rim, with the more conventional spokes positioned inside these drillings. Brake flow is directed through these drillings and relatively little passes through ten holes between the main spokes. With this set up the heated brake flow has far more contact with the wheel, both as it passes to wards the spokes and even the spokes themselves have more surface area to absorb heat from the brake flow.

The heated brake flow passes through the outer drillings (red)

Normally teams tune the brake cooling via the inlet, taping it over or changing to a different sized inlet scoop. With the McLaren system the inlet scoop remains largely the same, but brake cooling is tuned via a threaded adjuster (Yellow in the following diagrams) moving a flap to either open or close the openings in the brake drum. This is analogous to the cars engine cooling, the inlet tends to remain the same and the outlet area is tuned for optimum cooling. A larger than required duct will create extra drag, but I suspect the operating window the adjustable duct is within quite a small range. Probably smaller range than switching to the next size brake duct inlet.

The flap (grey) is closed to cover up the cooling outlets

When the flap closes the opening, more heat is retained within the duct for hotter brakes, but cooler tyres.

The duct is open to expose more of the cooling outlet (red)

Conversely opening the flap to expose more duct exit area, brakes run cooler and more heat is passed into the tyre.

Also, see these images comparing the adjustable brake ducts of Hamiltons car (right) and the unadjustable ones on Buttons (left). via Russell Batchelor XPB.cc.  The silver coated section inside the brake duct on the right, is the adjustable part.  This semi cylindrical panel winds in to open up more cooling outlet area.

We have seen the adjusters fitted to the rear brakes in Bahrain, but they’ve reportedly been on the car since China and F1 insiders tell me they were used even last year. I’m also told the front brakes are adjustable too, but I’ve seen no evidence for this. One thing is clear, these are quoted as secret devices, but most rival F1 engineers know about them!

I understand the brake ducts can be adjusted from a single point near the fuel filler flap, so I presume cables (Grey in the preceding diagrams) run from the threaded adjuster back to the middle of the car. At a pitstop the mechanic can adjust the brakes with a tool accordingly.

See this picture from the Spanish GP (via F1talks.pl) shows the adjustment in operation.  Cables from each of the adjusters meet at the fuel flller flap and the mechanic, who is usually there to hold the car steady and clear out the airbox, can adjust the ducts with a pre-agreed number of turns on the hand tool in the adjuster.  As the adjustment is done via a mechanic it is a legal change to set up, allowed once the race starts, but not during qualifying or whilst the car is in Parc Fermé. When the car is stationery at a pitstop, the system is not considered moveable aero.

Changing the brake ducting will alter the amount of brake cooling, opening the duct will allow more heat to escape and reduce brake disc temperatures and vice versa with closing the ducts. Adjusting the rear brake temperature may be the sole reason for this season. With changing tyre balance and KERS usage the rear brakes have been prone to overheating. But the more likely benefit is the effect of the brake heat altering tyre temperature. As the brake heat passes through the smaller set of drillings in the wheel, this has a greater surface area than the more usual 8-10 spoke wheel; this allows more heat to transfer into the wheel. Heating the wheel will transfer heat into the tyre; this will be useful when the driver is struggling for tyre temperature. The contrary is reducing the heat transfer into the wheel to reduce tyre temperature when the driver is struggling with heat related degradation.

Of other teams are able with their current wheel and duct arrangement to alter tyre temperatures via heat radiated from the brakes, then this will be an easy modification to make to the car. However many other F1 Engineers suggest that they find little effect of brake temperatures altering tyre temperature, making the solution unattractive to them. So it’s not clear if this is a must have solution or other teams are able to tune tyre temperatures with more conventional means. As yet I have not seen any other team run these types of brake ducts.

RenaultSport: Technical Feature on Engine Mapping/Tyre Management

Spanish Grand Prix Technical Feature

I rarely post press releases in their entirety.  This feature from RenaultSport was so interesting I though it worth sharing with you all.

They’ve been the talking point of the season so far: Pirelli’s P Zero tyres. As the sole point of contact to the track, and thus the point through which an engine delivers its power to the circuit, tyre wear is of vital importance to Renault Sport F1’s engineers too.

And, as Renault Sport F1 Williams’ track engineer David Lamb divulges, its importance is something of which engine engineers are only too aware.

“For the first couple of races tyre wear really wasn’t so high, but in Shanghai and Bahrain the tyre wear was a lot more noticeable and became one of the key performance differentiators. The rears are generally the first to go because of the stress they are subjected to under braking and accelerating, so we immediately knew we could help in preserving the tyres.

“When a driver lifts off the throttle, the rears are unloaded, but when the power is reapplied, the forces going through the tyre are accentuated. This constant on-off pressure really increases the wear rate and if you lock the tyres under braking it doesn’t just cost lap time, it also heats the tyres up, which accelerates wear.

“The first thing you can do to reduce locking and improve the wear rate is to keep some torque from the engine when the driver lifts his foot off the pedal, so even when you’ve got zero percent input from the pedal you can still ask for some torque from the engine. This will be done in the way you map the engine. It squares up the rear of the car, stops it from locking and reduces the tyre wear as a result. It is actually still a negative torque because it is illegal to ask for a positive torque from the engine if the pedal is at zero percent. The driver will have probably three or four options available to him, dependant on in-race scenarios.”

The concept thus seems simple enough, but it will come as little surprise to learn that the benefits of utilising such a technique must be measured against its shortcomings.

“The big downside to this is that fuel consumption will, of course, go up: it increases incrementally depending on how much of a push you use. The fuel consumption increase can be as high as one or two percent per lap, so you’re looking at maybe an extra three kilos of fuel at the start of the race. The weight leads to slower lap times, to the tune of a few hundredths per lap. It’s an irony that you can use the push to help tyre wear but carrying the extra weight of the fuel to facilitate this push may have a negative impact on tyre wear!

A further disadvantage is that operating temperatures can increase: “As you are using the engine on overrun and therefore using it for longer over the lap, you are also looking at a slight increase in operating temperatures. Generally it shouldn’t be a problem in Barcelona, but in Bahrain where ambient temperatures were a lot higher we were on the edge.”

Firing on overrun is not the only tool available to Renault Sport F1’s engineers however. As David explains, throttle mapping has never been more crucial.

“The other factor in terms of tyre wear that is important to factor in is the use of pedal maps; that is, the percentage of pedal application in relation to percentage of torque being used.

“A crude example could be if a driver says, ‘OK, when the throttle is at 30 percent, I want 15 percent of the engine torque.’ A soft pedal map is when a driver has quite a bit of modulation initially, but correspondingly he will always have less progression at the higher throttle positions because 0% and 100% throttle position have to correspond to minimum and maximum engine torque (again as per the rules) – i.e. anything you take at the start to increase progression will be paid for with a loss of resolution at somepoint later on.

“This, of course, has a huge effect on the manner in which the tyres are used as we have to be very specific for each driver, from track to track and even corner to corner to ensure as little wheelspin as possible. As engineers, it is in this mapping that one of the more enjoyable challenges lies.

“There are, of course, limitations that have been placed upon pedal maps so that a version of traction control doesn’t edge its way back into the sport and the FIA is quite strict on how we use pedal maps, especially on launch procedure. But Fridays now see us working incredibly hard to make sure that we hone our pedal maps for each corner and for each driver to make sure that they are happy with throttle application and power output.”

Renault Sport F1 certainly seems to have got on top of the challenges presented by the new competitive face of Formula 1 in 2012, with the running order at the last race a clear sign of the progress made over the opening rounds of the championship.

“The Bahrain result was fabulous for everyone at Renault. To have the top four powered by Renault was a great result. It gave everyone a boost going into the Mugello test and now this race in Spain.”

Sauber: Exhaust Sidepod Development

Sauber have proven to be one of the more progressive teams with aero development this year. The team’s have played with several different approaches to aero and exhaust positioning over the opening months of the year.
Now Sauber have produced their fourth sidepod iteration and surprisingly it is a McLaren style exhaust outlet. This goes away from the path they forged with the ramped downwash sidepod. Aiding the new exhaust position is a revised vane over the top of the sidepod.
The team also ran a revised front wing. I will cover this development in a separate post.

Sauber launched their car with a simple sidepod (above); this almost looked like a Red Bull RB5 set up, with the top exit exhaust aimed generally over the rear bodywork. This simple initial attempt was probably just for the launch pictures.

As soon after, the definitive Melbourne spec exhaust was tested. This sported a distinctive ramped section, which created a downwash that drove the top exit exiting exhaust flow downwards, then the ramped tail of the diffuser encouraged the flow to follow the sidepods line down towards the rear tyre\diffuser. This mix of downwash and coanda effect all but reproduced the EBD effect used in 2011. As the exhaust flow was directed along the bodywork, it appears to be more accurate way of directing exhaust flow towards the diffuser. However the effect lacks a path for the sidepods undercut airflow to pass through. Red Bulls Melbourne spec (V2.0) exhaust attempted to cure this with the cross over tunnel.
To aid the downwash flow over the sidepod Sauber added a horizontal vane over the front section of sidepod. This front 15cm of sidepod is free of the bodywork restrictions of the main sidepod volume. The vane points the airflow downwards, to drive greater flow over the exhaust exit. In isolation this vane actually creates lift, as is common with F1 aero this counter intuitive solution creates more global downforce because of its downstream effect, than the small loss in downforce its creates on its own.
In practice for subsequent races Sauber tried a third iteration of the exhaust, still with a top exit, but the exhaust faired-in and blow out through scalloped slot, presumably to better direct the airflow. Using similar interpretations of the exhaust\bodywork rules as McLaren exploited with their side exiting exhaust. This V3 set up wasn’t raced and will probably never race, with this fourth version now seen in testing.


The V4 sidepod discards the philosophy of the firth three completely, instead the sidepod is shorter and the coke bottle area forms a much tighter waist. Protruding from the flank of the sidepod the exhaust sits inside a small bulged fairing. This fairing mimics the McLaren with the open topped channel cut in to it, to allow the downwash to redirect the exhaust flow. The channel probably also provides a small degree of coanda effect in bending the exhaust flow downwards, but far less than with the earlier sidepod designs.

Exhaust flow exiting the duct now passes openly towards the tyre\diffuser intersection. With the coke bottle area now free of the ramped section, the undercut sidepod flow can pass towards the centre of the diffuser to use the energy in the flow to drive some downforce from the trailing edge gurney and starter motor slot.
With the change in sidepod profile and the exhaust exiting more sideways the through the top, the downwash vane has also been altered. Rather than a horizontal vane, the vanes curved around the frontal of the sidepod, to create the depression over the revised exhaust outlet position.

Force India: New Front End Aero

Sahara Force India ran a new front end in testing, with some of the distinctive features from the launch car dropped. The new set up is aimed redirecting the flow along the edges of the nose towards the floors lower leading edge. The new package consists of; a revised nose tip, front wing pylons and different turning vanes.
The team also ran a revised sidepod package with McLaren style exhaust outlets. I will cover this development in a separate post.

From the cars launch and through the first four races, the nose tip sported a hammer-head style twin camera set up. Now the cameras have relocated to further back along the nose and the nose tip now forms a more aesthetically pleasing rounded shape. Although neutral in aero section, the camera pods are placed in a position where their shape will interact with the airflow to create some aero benefit downstream on the car.
Below this the pylons mounting the front wing have been extended and form a linger vane like shape. This was something FIF1 have worked with a lot over the past few seasons. Using this shape as part of the cars aero set up for different speed\downforce circuits. Typically longer pylons for higher downforce tracks and smaller pylons for places like Monza. Although the vanes may well create some low pressure behind the neutral front wing centre section to create load at the front axle, I expect they are more for directing the airflow along the y250 axis. This is a longitudinal line along the edge of the chassis, 250mm from the cars centre line. This is effectively as far outboard aero devices are allowed and hence where teams tend to focus on vane development. Creating different flow structures along this axis, helps creates the airflow distribution at the floors lower leading edge which is critical to diffuser efficiency.


Along similar line are the new turning vanes, on the launch car these were the popular “L” shaped hanging vanes (pictured above), mounted beneath the nose cone. Now they are a pair of curved vanes under the front suspension, a similar solution to Sauber\Renault and adopted by Red Bull last year. Again similar to these teams there is a small split in the vane to induce a stronger vortex effect along the y250 axis.

The Flying Lap Webcast: Mugello Test Review

I joined Peter windsor via phone to review the changes to the cars at the end of the second day of testing.  My section commences at 49 minutes, although I suggest you enjoy watching the entire episode.

Summary

As Formula 1 runs its first in-season test in the Pirelli era, we are delighted to be joined live on-line by Paul Hembery, Director of Motorsport for Pirelli. No stranger to The Flying Lap – or to New Media – Paul is respected up and down the pit lane not only for his knowledge and managerial skill but also for his obvious passion for the sport. We’ll be talking to Paul about the season so far and about one of the key characteristics of the first four races – the relatively small “operating window” of the Pirelli compound combinations; and we’ll be looking at all the latest trends from the Mugello test, where most of the F1 teams and top drivers are running. We also spoke to Sahara Force India’s Nico Hulkenberg shortly before he left home for Day Three in Mugello. Nico reflects on his first four races with the team, the current standing of the VJM05-Mercedes and his prospects in the upcoming Spanish and Monaco Grands Prix. Our third guest, also joining us on-line, is Davide Valsecchi, the talented young Italian driver who has just made history by winning three GP2 races in a row.

Nissan and PlayStation GT Academy: virtual-to-reality racing competition

Nissan and PlayStation have once again joined forces to run a fourth instalment of the innovative GT Academy virtual-to-reality racing competition. While the four previous GT Academy graduates line up in top-level race series in 2012, the programme that set them on their path to motor sport fame has once again opened to competitors, starting on 1st May 2012.

Jann Mardenborough, the 2011 GT Academy winner, has got his career off to a flying start. He achieved a podium finish in the Dubai 24h race in January and is now competing in the Blancpain Endurance Series in a Nissan GT-R NISMO GT3. We have been following Jann during his preparations for the 2012 season and in his first race in the Blancpain Endurance Series at Monza. The link below is a film of Jann competing at Monza. I hope you agree it demonstrates the emotional side of the sport, highlighted when the Nissan GT-R Nismo GT3 was in 14th place overall and slowed to an agonising crawl at the final corner of the three-hour Blancpain Endurance race. The GT Academy RJN team managed to bring the car across the finish line in 34th position overall. Jann and his team mates will be competing in the next round of the Blancpain Endurance Series, at Silverstone on 3rd June.